Advection/diffusion of Large-scale B-field in Accretion Disks
نویسندگان
چکیده
Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk’s surface layers are non-turbulent and thus highly conducting (or nondiffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z) which depends mainly on the midplane thermal to magnetic pressure ratio β > 1 and the Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β > 1) large-scale field does not diffuse away as suggested by earlier work. For a wide range of parameters β > 1 and P ≥ 1, we find stationary channel type flows where the flow is radially outward near the midplane of the disk and radially inward in the top and bottom parts of the disk. Channel flows with inward flow near the midplane and outflow in the top and bottom parts of the disk are also found. We find that Prandtl numbers larger than a critical value (estimated to be 2.7) are needed in order for there to be magnetocentrifugal outflows from the disk’s surface. For smaller P , electromagnetic outflows are predicted. Subject headings: accretion, accretion disks — galaxies: jets — magnetic fields — MHD — X-rays: binaries
منابع مشابه
The Role of Thermal Conduction in Accretion Disks with Outflows
In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...
متن کاملAdvection of Magnetic Fields in Accretion Disks: Not so Difficult after All
We show that a large-scale, weak magnetic field threading a turbulent accretion disk tends to be advected inward, contrary to previous suggestions that it will be stopped by outward diffusion. The efficient inward transport is a consequence of the diffuse, magnetically-dominated surface layers of the disk, where the turbulence is suppressed and the conductivity is very high. This structure aris...
متن کاملThe Large Scale Magnetic Fields of Thin Accretion Disks
Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion...
متن کاملA Simplified Solution for Advection Dominated Accretion Flows with Outflow
The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...
متن کاملDiffusive Migration of Low-Mass Proto-planets in Turbulent Disks
Torque fluctuations due to magnetorotational turbulence in proto-planetary disks may greatly influence the migration patterns and survival probabilities of nascent planets. Provided that the turbulence is a stationary stochastic process with finite amplitude and correlation time, the resulting diffusive migration can be described with a FokkerPlanck equation, which we reduce to an advection-dif...
متن کامل